Paul Nguyen

Leeward Community College Instructor

Main menu

Skip to content
  • Home
  • Teaching
    • Calculus II
      • Module 1: The Calculus of Inverse Functions
        • 1.1 Inverse Functions
        • 1.2 The Natural Logarithmic Function
        • 1.3 Exponential Functions
        • 1.4 Inverse Trigonometric Functions
      • Module 2: Symbolic Techniques of Integration
        • 2.1 Integration by Parts
        • 2.2 Trigonometric Integrals
        • 2.3 Trigonometric Substitutions
        • 2.4 Partial Fractions Decomposition
      • Module 3: Additional Integration Techniques and Limits
        • 3.1 Tables of Integrals
        • 3.2 Numerical Integration
        • 3.3 Indeterminate Forms and LʻHospitalʻs Rule
        • 3.4 Improper Integrals
      • Module 4: Introduction to Differential Equations
        • 4.1 Differential Equations
        • 4.2 Exponential Growth and Decay
        • 4.3 Other Elementary Differential Equations
        • 4.4 Introduction to Direction Fields (also called Slope Fields)
      • Module 5: Introduction to Infinite Sequences and Series
        • 5.1 Introduction to Infinite Sequences
        • 5.2 Introduction to Infinite Series
      • Module 6: Convergence and Divergence of Infinite Series
        • 6.1 Convergence Tests, Part I
        • 6.2 Convergence Tests, Part II
        • 6.3 Convergence Tests, Part III
        • 6.4 Alternating Series
      • Module 7: Power Series
        • 7.1 Polynomial Approximation of Functions
        • 7.2 Properties of Power Series
        • 7.3 Taylor Series
      • Projects and Show your Work Problems
    • Calculus IV
      • Module 1: Double Integrals
        • 1.1 Double Integrals over Rectangular Regions
        • 1.2 Double Integrals over General Regions
        • 1.3 Double Integrals in Polar Coordinates
        • 1.4 Module Review
      • Module 2: Triple Integrals
        • 2.1 Triple Integrals
        • 2.2 Triple Integrals in Cylindrical and Spherical Coordinates
        • 2.3 Integrals for Mass Calculations
        • 2.4 Change of Variables in Multiple Integrals
      • Module 3: Vector Calculus, Green’s Theorem, and Divergence & Curl
        • 3.1 Vector Fields
        • 3.2 Line Integrals
        • 3.3 Conservative Vector Fields
        • 3.4 Green’s Theorem
        • 3.5 Divergence and Curl
      • Module 4: Surface Integrals, Stokes’ and Divergence Theorem
        • 4.1 Surface Integrals
        • 4.2 Stokes’ Theorem
        • 4.3 Divergence Theorem
        • 4.4 Module Review
    • Precalculus I
      • Module 1: Graphs and Functions
        • 1.1 Graphs of Equations
Office: GT-215
Email: pvnguyen@hawaii.edu
Office Phone: (808) 455-0315
  • Calculus II
    • Module 1: The Calculus of Inverse Functions
      • 1.1 Inverse Functions
      • 1.2 The Natural Logarithmic Function
      • 1.3 Exponential Functions
      • 1.4 Inverse Trigonometric Functions
    • Module 2: Symbolic Techniques of Integration
      • 2.1 Integration by Parts
      • 2.2 Trigonometric Integrals
      • 2.3 Trigonometric Substitutions
      • 2.4 Partial Fractions Decomposition
    • Module 3: Additional Integration Techniques and Limits
      • 3.1 Tables of Integrals
      • 3.2 Numerical Integration
      • 3.3 Indeterminate Forms and LʻHospitalʻs Rule
      • 3.4 Improper Integrals
    • Module 4: Introduction to Differential Equations
      • 4.1 Differential Equations
      • 4.2 Exponential Growth and Decay
      • 4.3 Other Elementary Differential Equations
      • 4.4 Introduction to Direction Fields (also called Slope Fields)
    • Module 5: Introduction to Infinite Sequences and Series
      • 5.1 Introduction to Infinite Sequences
      • 5.2 Introduction to Infinite Series
    • Module 6: Convergence and Divergence of Infinite Series
      • 6.1 Convergence Tests, Part I
      • 6.2 Convergence Tests, Part II
      • 6.3 Convergence Tests, Part III
      • 6.4 Alternating Series
    • Module 7: Power Series
      • 7.1 Polynomial Approximation of Functions
      • 7.2 Properties of Power Series
      • 7.3 Taylor Series
    • Projects and Show your Work Problems
  • Calculus IV
    • Module 1: Double Integrals
      • 1.1 Double Integrals over Rectangular Regions
      • 1.2 Double Integrals over General Regions
      • 1.3 Double Integrals in Polar Coordinates
      • 1.4 Module Review
    • Module 2: Triple Integrals
      • 2.1 Triple Integrals
      • 2.2 Triple Integrals in Cylindrical and Spherical Coordinates
      • 2.3 Integrals for Mass Calculations
      • 2.4 Change of Variables in Multiple Integrals
    • Module 3: Vector Calculus, Green’s Theorem, and Divergence & Curl
      • 3.1 Vector Fields
      • 3.2 Line Integrals
      • 3.3 Conservative Vector Fields
      • 3.4 Green’s Theorem
      • 3.5 Divergence and Curl
    • Module 4: Surface Integrals, Stokes’ and Divergence Theorem
      • 4.1 Surface Integrals
      • 4.2 Stokes’ Theorem
      • 4.3 Divergence Theorem
      • 4.4 Module Review

Module 4: Surface Integrals, Stokes’ and Divergence Theorem

Review / Background


  1. Parametric Surfaces (Paul)
  2. Vector Functions for Surfaces (Whitman)

Lessons


  • 4.1 Surface Integrals
  • 4.2 Stokes’ Theorem
  • 4.3 Divergence Theorem
  • 4.4 Module Review