# 2.5 Horizontal and Vertical Shifts

Two graphs may look exactly alike in shape, but differ in their positions within the xy-plane.

Adding or subtracting values from a function will shift the graph of the function on the coordinate plane.

If f is a function and c is a positive constant, then the graph of

• y = f(x) + c is the graph of y = f(x) shifted up c units
• y = f(x) – c is the graph of y = f(x) shifted down c units
• y = f(x + c) is the graph of y = f(x) shifted left c units
• y = f(x – c) is the graph of y = f(x) shifted right c units

### Vertical translations: adding or subtracting after the function (outside the parenthesis)

y = f(x) +3 shifts f(x) up 3 spaces on the y axis

y = f(x) – 2 shifts f(x) down 2 spaces on the y axis

### Horizontal translations: adding or subtracting with the function (inside the parenthesis)

y = f(x+4) shifts the graph of f(x) left 4 spaces on the x axis

y = f(x-3) shifts the graph of f(x) right 3 spaces on the x axis

### Vertical & Horizontal translation

y = f(x-5) +2 shifts the graph of f(x) up 2 spaces on the y-axis and right 5 on the x-axis.

If , , and Find the coordinates for  and  for each function value 