1.5 Inequalities

Properties of Inequalities and Compound Inequalities

Solve inequalities the same way you solve an equation. However, when you multiply or divide an inequality by a negative #, you must reverse the direction of the inequality.

Writing Inequality Solutions:

can be expressed in 4 different forms

(Section P-1in your textbook has details on each method)

<u>Inequality</u>: a statement that 2 values are not equal using >, <, \ge , \le x > 3 $x \ge 7$

Set-builder notation: represents the elements of an inequality in Set notation

 $\{x \mid x > 5\}$ which is read "the set of x such that x is greater than 5"

Graph: single variable inequalities are graphed on a number line using the following symbols:

<u>Interval notation</u>: shows a range of numbers using

$$[or] for \ge or \le and (or) for > or <$$

x > 5 in interval notation is $(5, \infty)$ $x \le 7$ in interval notation is $(-\infty, 7]$

A compound inequality would have 2 or more intervals and a U (union) symbol between each.

x < -3 and $x \ge 2$ in interval notation is $(-\infty, -3)$ U $[2, \infty)$

A compound inequality is formed by joining two inequalities with a connective word such as **and** or **or**.

Examples:

1.
$$x + 4 > 3x + 16$$

2.
$$4x + 1 > -2$$
 and $4x + 1 \le 17$

3.
$$x + 1 > 4$$
 or $x + 2 \le 3$ 4. $0 \le 3x - 1 \le 10$

4.
$$0 \le 3x - 1 \le 10$$

Absolute Value Inequalities

If
$$|x| \le a$$
, then $-a \le x \le a$
Consider $|x| \le 6$

If
$$|x| > a$$
, then $x < -a$ or $x > a$
Consider $|x| > 4$

Examples: (give answers in interval notation)

1. Solve: |5 - 2x| < 72. Solve $|4x - 5| \ge 7$

1. Solve:
$$|5 - 2x| < 7$$

2. Solve
$$|4x - 5| \ge 7$$

Polynomial Inequalities

To solve a polynomial inequality using the test point method (*Critical Value Method*):

- Rewrite the inequality, if necessary, so that one side is 0.
 Solve the inequality as if it were an equation find critical values.
- Use the solutions (critical values) to divide the number line into intervals.
 Substitute a test point from each interval to see whether the expression is true or false (or use sign diagram).
- 5. Find the interval(s) that satisfy the inequality.

Examples:

1. Solve
$$x^2 - 2x > 3$$

1. Solve
$$x^2 - 2x > 3$$
 2. Solve $x^2 + 5x + 6 < 0$

Solve a Rational Inequality

Critical Value – in a rational expression is any value that causes the numerator or denominator to equal zero (0).

To solve a rational inequality:

- 1. Find the value(s), if any that make the numerator zero. Find the value(s), if any that make the denominator zero.
- 2. Use these values to divide the number line into intervals.
- 3. Substitute a test point from each interval into the rational expression to determine the sign of the express in that interval.
- 4. Find the intervals that satisfy the inequality.

Examples:

1. Solve
$$\frac{x+4}{x-1} \le 0$$

1. Solve
$$\frac{x+4}{x-1} \le 0$$
 2. Solve $\frac{(x-3)(x-5)}{x+2} \ge 0$